

5.8 NOISE

The purpose of this section is to evaluate noise source impacts on-site and to surrounding land uses as a result of implementation of the proposed project. This section evaluates short-term construction-related impacts, as well as future buildout conditions. Mitigation measures are also recommended to avoid or lessen the project's noise impacts. Information in this section was obtained from the City of Newport Beach General Plan (General Plan) and the Newport Beach Municipal Code (Municipal Code). For the purposes of mobile source noise modeling and contour distribution, traffic information contained in the Lido House Hotel Project Traffic Impact Analysis, prepared by RBF Consulting, dated April 2014 (refer to Appendix 11.3, Traffic Impact Analysis/Parking Study) was used. Noise measurement and traffic noise modeling data can be found in Appendix 11.5, Noise Data.

5.8.1 EXISTING SETTING

NOISE SCALES AND DEFINITIONS


Sound is described in terms of the loudness (amplitude) of the sound and frequency (pitch) of the sound. The standard unit of measurement of the loudness of sound is the decibel (dB). Since the human ear is not equally sensitive to sound at all frequencies, a special frequency-dependent rating scale has been devised to relate noise to human sensitivity. The A-weighted decibel scale (dBA) performs this compensation by discriminating against frequencies in a manner approximating the sensitivity of the human ear.

Decibels are based on the logarithmic scale. The logarithmic scale compresses the wide range in sound pressure levels to a more usable range of numbers in a manner similar to the Richter scale used to measure earthquakes. In terms of human response to noise, a sound 10 dBA higher than another is judged to be twice as loud, and 20 dBA higher four times as loud, and so forth. Everyday sounds normally range from 30 dBA (very quiet) to 100 dBA (very loud). Examples of various sound levels in different environments are illustrated on Exhibit 5.8-1, Sound Levels and Human Response.

Many methods have been developed for evaluating community noise to account for, among other things:

- The variation of noise levels over time;
- The influence of periodic individual loud events; and
- The community response to changes in the community noise environment.

Numerous methods have been developed to measure sound over a period of time; refer to <u>Table 5.8-1</u>, <u>Noise Descriptors</u>.

Source: Melville C. Branch and R. Dale Beland, *Outdoor Noise in the Metropolitan Environment*, 1970.

Environmental Protection Agency, *Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety* (EPA/ONAC 550/9-74-004), March 1974.

NOT TO SCALE

LIDO HOUSE HOTEL ENVIRONMENTAL IMPACT REPORT

Table 5.8-1 Noise Descriptors

Term	Definition					
Decibel (dB)	The unit for measuring the volume of sound equal to 10 times the logarithm (base 10) of the ratio of the pressure of a measured sound to a reference pressure (20 micropascals).					
A-Weighted Decibel (dBA)	A sound measurement scale that adjusts the pressure of individual frequencies according to human sensitivities. The scale accounts for the fact that the region of highest sensitivity for the human ear is between 2,000 and 4,000 cycles per second (hertz).					
Equivalent Sound Level (Leq)	The sound level containing the same total energy as a time varying signal over a given time period. The L _{eq} is the value that expresses the time averaged total energy of a fluctuating sound level.					
Maximum Sound Level (L _{max})	The highest individual sound level (dBA) occurring over a given time period.					
Minimum Sound Level (L _{min})	The lowest individual sound level (dBA) occurring over a given time period.					
Community Noise Equivalent Level (CNEL)	A rating of community noise exposure to all sources of sound that differentiates between daytime, evening, and nighttime noise exposure. These adjustments are +5 dBA for the evening, 7:00 PM to 10:00 PM, and +10 dBA for the night, 10:00 PM to 7:00 AM.					
Day/Night Average (L _{dn})	The L _{dn} is a measure of the 24-hour average noise level at a given location. It was adopted by the U.S. Environmental Protection Agency (EPA) for developing criteria for the evaluation of community noise exposure. It is based on a measure of the average noise level over a given time period called the L _{eq} . The L _{dn} is calculated by averaging the L _{eq} 's for each hour of the day at a given location after penalizing the "sleeping hours" (defined as 10:00 PM to 7:00 AM) by 10 dBA to account for the increased sensitivity of people to noises that occur at night.					
Exceedance Level (Ln)	The A-weighted noise levels that are exceeded 1%, 10%, 50%, and 90% (L_{01} , L_{10} , L_{50} , L_{90} , respectively) of the time during the measurement period.					
Source: Cyril M. Harris, Handbook of Noise Control, dated 1979.						

HEALTH EFFECTS OF NOISE

Human response to sound is highly individualized. Annoyance is the most common issue regarding community noise. However, many factors influence people's response to noise. The factors can include the character of the noise, the variability of the sound level, the presence of tones or impulses, and the time of day of the occurrence. Additionally, non-acoustical factors, such as the person's opinion of the noise source, the ability to adapt to the noise, the attitude towards the source and those associated with it, and the predictability of the noise, all influence people's response. As such, response to noise varies widely from one person to another and with any particular noise, individual responses will range from "not annoyed" to "highly annoyed."

The effects of noise are often only transitory, but adverse effects can be cumulative with prolonged or repeated exposure. The effects of noise on the community can be organized into six broad categories:

- Noise-Induced Hearing Loss;
- Interference with Communication;
- Effects of Noise on Sleep;
- Effects on Performance and Behavior;
- Extra-Auditory Health Effects; and
- Annoyance.

According to the United States Public Health Service, nearly ten million of the estimated 21 million Americans with hearing impairments owe their losses to noise exposure. Noise can mask important sounds and disrupt communication between individuals in a variety of settings. This process can cause anything from a slight irritation to a serious safety hazard, depending on the circumstance. Noise can disrupt face-to-face communication and telephone communication, and the enjoyment of music and television in the home. It can also disrupt effective communication between teachers and pupils in schools, and can cause fatigue and vocal strain in those who need to communicate in spite of the noise.

Interference with communication has proved to be one of the most important components of noise-related annoyance. Noise-induced sleep interference is one of the critical components of community annoyance. Sound level, frequency distribution, duration, repetition, and variability can make it difficult to fall asleep and may cause momentary shifts in the natural sleep pattern, or level of sleep. It can produce short-term adverse effects on mood changes and job performance, with the possibility of more serious effects on health if it continues over long periods. Noise can cause adverse effects on task performance and behavior at work, and non-occupational and social settings. These effects are the subject of some controversy, since the presence and degree of effects depends on a variety of intervening variables. Most research in this area has focused mainly on occupational settings, where noise levels must be sufficiently high and the task sufficiently complex for effects on performance to occur.

Annoyance can be viewed as the expression of negative feelings resulting from interference with activities, as well as the disruption of one's peace of mind and the enjoyment of one's environment. Field evaluations of community annoyance are useful for predicting the consequences of planned actions involving highways, airports, road traffic, railroads, or other noise sources. The consequences of noise-induced annoyance are privately held dissatisfaction, publicly expressed complaints to authorities, and potential adverse health effects, as discussed above. In a study conducted by the United States Department of Transportation, the effects of annoyance to the community were quantified. In areas where noise levels were consistently above 60 dBA CNEL, approximately nine percent of the community is highly annoyed. When levels exceed 65 dBA CNEL, that percentage rises to 15 percent. Although evidence for the various effects of noise have differing levels of certainty, it is clear that noise can affect human health. Most of the effects are, to a varying degree, stress related.

GROUND-BORNE VIBRATION

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. The peak particle velocity (PPV) or the root mean square (RMS) velocity is usually used to describe vibration amplitudes. PPV is defined as the maximum instantaneous peak or vibration signal, while RMS is defined as the square root of the average of the squared amplitude of the signal. PPV is typically used for evaluating potential building damage, whereas RMS is typically more suitable for evaluating human response. Typically, ground-borne vibration, generated by man-made activities, attenuates rapidly with distance from the source of vibration. Man-made vibration issues are therefore usually confined to short distances (i.e., 500 feet or less) from the source.

Both construction and operation of development projects can generate ground-borne vibration. In general, demolition of structures preceding construction generates the highest vibrations. Construction equipment such as vibratory compactors or rollers, pile drivers, and pavement breakers can generate perceptible vibration during construction activities. Heavy trucks can also generate ground-borne vibrations that vary depending on vehicle type, weight, and pavement conditions.

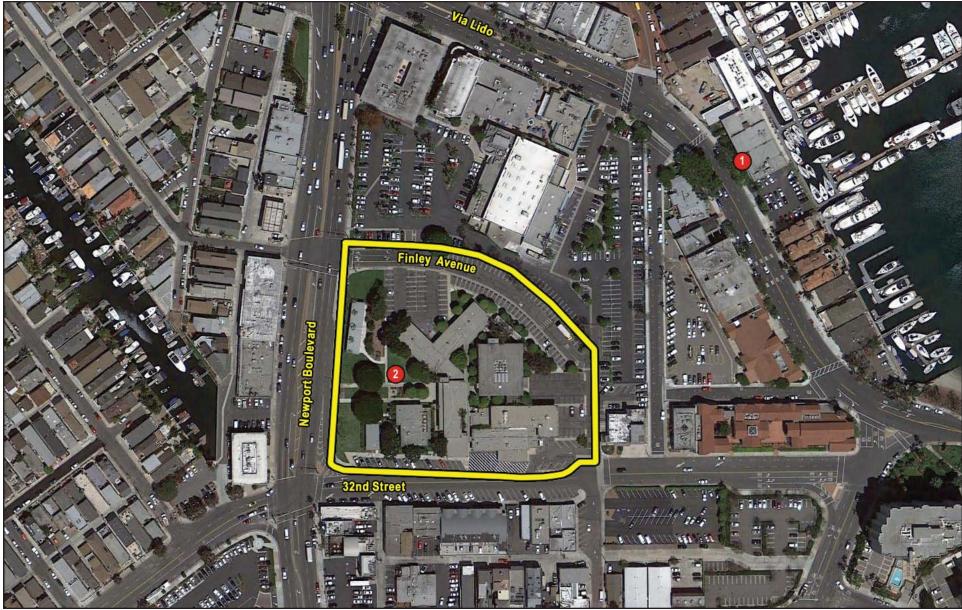
SENSITIVE RECEPTORS

Human response to noise varies widely depending on the type of noise, time of day, and sensitivity of the receptor. The effects of noise on humans can range from temporary or permanent hearing loss to mild stress and annoyance due to such things as speech interference and sleep deprivation. Prolonged stress, regardless of the cause, is known to contribute to a variety of health disorders. Noise, or the lack thereof, is a factor in the aesthetic perception of some settings, particularly those with religious or cultural significance. Certain land uses are particularly sensitive to noise, including schools, hospitals, rest homes, long-term medical and mental care facilities, and parks and recreation areas. Residential areas are also considered noise sensitive, especially during the nighttime hours.

Sensitive uses within the immediate project area include residential uses to the west and northwest (across Newport Boulevard), southwest (along Marcus Avenue), and southeast (across Lido Park Drive). Additional existing sensitive receptors located in the project vicinity include hotels, motels, schools, hospitals, libraries, parks, and places of worship; refer to <u>Table 5.8-2</u>, <u>Sensitive Receptors</u>.

AMBIENT NOISE MEASUREMENTS

In order to quantify existing ambient noise levels in the project area, RBF Consulting conducted noise measurements on December 4, 2013; refer to Exhibit 5.8-2, Noise Measurement Locations, and Table 5.8-3, Noise Measurements. The noise measurement sites were representative of typical existing noise exposure within and immediately adjacent to the project site. Measurements were taken at each site, between 10:30 a.m. and 11:30 a.m. Meteorological conditions were clear skies, cool temperatures, with light wind speeds (approximately 0 to 5 miles per hour), and low humidity.


Table 5.8-2 **Sensitive Receptors**

Туре	Name	Distance from Project Site (feet)	Orientation from Project Site
		200	West
		275	Northwest
Residential	Residential Uses	750	Southwest
Residential	Residential Uses	800	Southeast
		75	South
		450	South/Southeast
	Little Inn by the Bay	1,200	South
	Bay Shores Peninsula Hotel	3,225	Southeast
Hotels/Motels	Newport Beach Vacation Home	3,550	Southeast
	Vacation Income Properties	4,175	Northwest
	Masonic Lodge	5,130	Northeast
	Horace Ensign Intermediate School	3,790	East
	Children's Center By the Sea	4,340	Southeast
Schools	Newport Heights Elementary	4,560	Northeast
	Newport Elementary	4,590	Southeast
	Newport Harbor High School	5,165	Northeast
	Christian Science First Church	272	East
Places of Worship	St James the Great Episcopal Church	320	East
	St Andrew's Presbyterian Church	4,990	Northeast
Hospitals	Hoag Hospital	2,600	North
Libraries	Balboa Branch Library	8,100	Southeast
	Newport Island Park	1,320	Northwest
	Thirty Eighth Street Park	1,335	West
Parks	Channel Park	2,545	Northwest
raiks	Genoa Park	2,815	East
	Cliff Drive Park	2,865	Northeast
	Horace Ensign Park	4,200	East

Table 5.8-3 Noise Measurements

Measurement Location Number	Location		L _{min} (dBA)	L _{max} (dBA)	Peak (dBA)	Time
1	Along Via Lido, in front of the Battaglia office building (3366 Via Lido)	63.4	45.3	73.9	99.7	10:38 a.m.
2	Former Newport City Hall		49.4	89.3	98.7	11:04 a.m.
Source: RBF Con	sulting, December 4, 2013.					

^{1.} Distances are measured from the exterior project boundary only and not from individual construction projects/areas within the interior of the project site.
Source: Google Earth, 2014.

Source: Eagle Aerial Imagery, 2012.

One of the control of the con

LIDO HOUSE HOTEL ENVIRONMENTAL IMPACT REPORT

Noise Measurement Locations

MOBILE SOURCES

In order to assess the potential for mobile source noise impacts, it is necessary to determine the noise currently generated by vehicles traveling through the project area. The existing roadway noise levels in the vicinity of the project site were projected. Noise models were run using the Federal Highway Administration's Highway Noise Prediction Model (FHWA RD-77-108) together with several roadway and site parameters. These parameters determine the projected impact of vehicular traffic noise and include the roadway cross-section (such as the number of lanes), roadway width, average daily traffic (ADT), vehicle travel speed, percentages of auto and truck traffic, roadway grade, angle-of-view, and site conditions ("hard" or "soft"). The model does not account for ambient noise levels (i.e., noise from adjacent land uses) or topographical differences between the roadway and adjacent land uses. Noise projections are based on modeled vehicular traffic as derived from the project's *Traffic Impact Analysis*.

A 30- to 50-mile per hour (mph) average vehicle speed was assumed for existing conditions based on empirical observations and posted maximum speeds along the adjacent roadways. Existing modeled traffic noise levels can be found in <u>Table 5.8-4</u>, <u>Existing Traffic Noise Levels</u>. As shown in <u>Table 5.8-4</u>, noise within the area from mobile noise ranges from 51.6 dBA to 72.6 dBA.

STATIONARY NOISE SOURCES

The project area consists of residential, institutional, commercial, recreational, and office uses served by a grid system of arterial, commuter, secondary, and local roadways. The primary sources of stationary noise in the project vicinity are urban-related activities (e.g., parking areas, conversations, and commercial areas). The noise associated with these sources may represent a single-event or a continuous occurrence.

5.8.2 REGULATORY SETTING

This section summarizes the laws, ordinances, regulations, and standards that are applicable to the project. Regulatory requirements related to environmental noise are typically promulgated at the local level. However, Federal and State agencies provide standards and guidelines to the local jurisdictions.

STATE OF CALIFORNIA GUIDELINES

California Environmental Quality Act

CEQA was enacted in 1970 and requires that all known environmental effects of a project be analyzed, including environmental noise impacts. Under CEQA, a project has a potentially significant impact if the project exposes people to noise levels in excess of standards established in the local general plan or noise ordinance. Additionally, under CEQA, a project has a potentially significant impact if the project creates a substantial increase in the ambient noise levels in the project vicinity above levels existing without the project. If a project has a potentially significant impact, mitigation measures must be considered. If mitigation measures to reduce the impact to less than significant levels are not feasible due to economic, social, environmental, legal or other conditions, the most feasible mitigation measures must be considered.

Table 5.8-4 Existing Traffic Noise Levels

		dBA @ 100 Feet from	Distance from Roadway Centerline to: (Feet)				
Roadway Segment	ADT	Roadway Centerline	60 CNEL Noise Contour	65 CNEL Noise Contour	70 CNEL Noise Contour		
Newport Boulevard							
16th Street to Industrial Way	55,000	72.5	2,220	702	222		
Industrial Way to Hospital Road	55,000	72.5	2,220	702	222		
Hospital Road to Coast Highway	52,000	70.0	1,219	385	122		
Coast Highway to Via Lido	47,000	69.4	1,102	349	110		
Via Lido to Finley Avenue	31,200	65.0	386	122	39		
Finley Avenue to 32nd Street	28,700	64.6	354	112	35		
32nd Street to 28th Street	22,100	63.9	273	86	27		
Superior Avenue							
Placentia Ave to Coast Hwy	24,000	66.7	563	178	56		
Balboa Boulevard							
Coast Highway to 32nd Street	20,000	63.4	247	78	25		
South of 32nd Street	9,600	60.2	119	38	12		
Hospital Road							
West of Newport Boulevard	16,200	63.9	279	88	28		
Coast Highway							
Orange St to Superior Ave	48,000	72.0	1,936	612	194		
Superior Ave to Newport Blvd	48,000	70.6	1,492	472	149		
32nd Street							
Balboa Blvd to Newport Blvd	7,400	59.1	91	29	9		
East of Newport Blvd	3,300	55.6	41	13	4		
28th Street							
West of Newport Boulevard	1,300	51.6	16	5	2		
Notes: ADT = average daily trips; dBA = A-w	eighted decibels;	CNEL = community	noise equivalent lev	el			

Noise modeling is based upon traffic data within the Lido House Hotel Project Traffic Impact Analysis, prepared RBF Source: Noise mode Consulting, April 2014.

California Government Code

California Government Code Section 65302 (f) mandates that the legislative body of each county and city adopt a noise element as part of its comprehensive general plan. The local noise element must recognize the land use compatibility guidelines established by the State Department of Health Services. The guidelines rank noise land use compatibility in terms of "normally acceptable", "conditionally acceptable", "normally unacceptable", and "clearly unacceptable" noise levels for various land use types. Single-family homes are "normally acceptable" in exterior noise environments up to 60 CNEL and "conditionally acceptable" up to 70 CNEL. Multiple-family residential uses are "normally acceptable" up to 65 CNEL and "conditionally acceptable" up to 70 CNEL, as are office buildings and business, commercial, and professional uses.

CITY OF NEWPORT BEACH

Newport Beach Noise Ordinance

The City of Newport Beach has a noise ordinance that provides noise guidelines and standards for significant noise generators. Noise standards from Chapter 10.26 (Community Noise Control) of Title 10: Offenses and Nuisances of the City's Municipal Code are presented in <u>Table 5.8-5</u>, <u>City of Newport Beach Exterior Noise Standards</u>, and <u>Table 5.8-6</u>, <u>City of Newport Beach Interior Noise Standards</u>.

Section 10.26.025 Exterior Noise Standards

A. The following noise standards, unless otherwise specifically indicated, shall apply to all property with a designated noise zone:

Table 5.8-5
City of Newport Beach Exterior Noise Standards

Zone	Allowable Exterior Noise Level (Leq) ¹				
Zone	7:00 a.m. to 10 p.m.	10 p.m. to 7 a.m.			
1- Single-, two- or multiple-family residential properties	55 dBA	50 dBA			
2- Commercial properties	65 dBA	60 dBA			
3- Residential portions of mixed-use properties	60 dBA	50 dBA			
4- Industrial or manufacturing	70 dBA	70 dBA			
1. If the ambient noise level exceeds the resulting standards, the	ambient shall be the standard.				

- 1. If the ambient noise level exceeds the resulting standards, the ambient shall be the standard.

 Source: Chapter 10.26 (Community Noise Control) Section 10.26.025(A) of the City of Newport Beach Municipal Code, 2013.
- B. It is unlawful for any person at any location within the incorporated area of the City to create any noise, or to allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person, which causes the noise level when measured on any other property, to exceed the following:
 - 1. The noise standard for the applicable zone for any fifteen-minute period;

- 2. A maximum instantaneous noise level equal to the value of the noise standard plus twenty (2) dBA for any period of time (measured using A-weighted slow response).
- C. In the event the ambient noise level exceeds the noise standard, the maximum allowable noise level under said category shall be increased to reflect the maximum ambient noise level.
- D. The Noise Zone III standard shall apply to that portion of residential property falling within one hundred (100) feet of a commercial property, if the intruding noise originates from that commercial property.
- E. If the measurement location is on boundary between two difference noise zones, the lower noise level standard applicable to the noise zone shall apply.

Section 10.26.030 Interior Noise Standards

A. The following noise standard, unless otherwise specifically indicated, shall apply to all residential property within all noise zones:

Table 5.8-6
City of Newport Beach Interior Noise Standards

Zone	Allowable Interior Noise Level ¹				
Zone	7:00 a.m. to 10 p.m.	10 p.m. to 7 a.m.			
1-Residential	45 dBA	40 dBA			
2- Residential portions of mixed-use properties	45 dBA	40 dBA			

If the ambient noise level exceeds the resulting standards, the ambient shall be the standard.
 Source: Chapter 10.26 (Community Noise Control) Section 10.26.030(A) of the City of Newport Beach Municipal Code, 2013.

If the ambient noise level exceeds the resulting standards, the ambient shall be the standard.

- B. It is unlawful for any person at any location within the incorporated area of the City to create any noise, or to allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person, which causes the noise level when measured on any other property, to exceed the following:
 - 1. The noise standard for the applicable zone for any fifteen-minute period;
 - 2. A maximum instantaneous noise level equal to the value of the noise standard plus twenty (2) dBA for any period of time (measured using A-weighted slow response).
- C. In the event the ambient noise level exceeds the noise standard, the maximum allowable noise level under said category shall be increased to reflect the maximum ambient noise level.
- D. The Noise Zone III standard shall apply to that portion of residential property falling within one hundred (100) feet of a commercial property, if the intruding noise originates from that commercial property.
- E. If the measurement location is on boundary between two difference noise zones, the lower noise level standard applicable to the noise zone shall apply.

10.28.040 Construction Activity—Noise Regulations.

The following noise regulations regarding construction activity from Chapter 10.28, Loud and Unreasonable Noise, of the City of Newport Beach Municipal Code are applicable to the proposed project:

- A. Weekdays and Saturdays. No person shall, while engaged in construction, remodeling, digging, grading, demolition, painting, plastering or any other related building activity, operate any tool, equipment or machine in a manner which produces loud noise that disturbs, or could disturb, a person of normal sensitivity who works or resides in the vicinity, on any weekday except between the hours of seven a.m. and six-thirty p.m., nor on any Saturday except between the hours of eight a.m. and six p.m.
- B. Sundays and Holidays. No person shall, while engaged in construction, remodeling, digging, grading, demolition, painting, plastering or any other related building activity, operate any tool, equipment or machine in a manner which produces loud noise that disturbs, or could disturb, a person of normal sensitivity who works or resides in the vicinity, on any Sunday or any federal holiday.
- C. No landowner, construction company owner, contractor, subcontractor, or employer shall permit or allow any person or persons working under their direction and control to operate any tool, equipment or machine in violation of the provisions of this section.

Newport Beach General Plan

The City of Newport Beach General Plan discloses guiding information pertaining to noise sensitive land uses and noise sources, and defines areas of noise impact for the purpose of developing policies to insure that Newport Beach residents will be protected from excessive noise intrusion. The Noise Element includes goals, objectives, and policies that apply to the proposed project, including those identified below.

Goal N 1, Noise Compatibility: Minimized land use conflicts between various noise sources and other human activities.

Policy N 1.1: Require that all proposed projects are compatible with the noise environment through the use of Table N2 (<u>Table 5.8-7</u>, <u>General Plan Land Use Noise Compatibility Matrix</u>, below), and enforce the interior and exterior noise standards shown in Table N3 (<u>Tables 5.8-5</u> and <u>5.8-6</u> above).

Applicants for proposed projects that require environmental review and are, located in areas projected to be exposed to a CNEL of 60 dBA and higher, as shown on Figure N4, Figure N5, and Figure N6 (see pages 12-17 through 12-22 of the City's General Plan Noise Element) may conduct a field survey, noise measurements or other modeling in a manner acceptable to the City to provide evidence that the depicted noise contours do not adequately account for local noise exposure circumstances due to such factors as, topography, variation in traffic speeds, and other applicable conditions. These findings shall be used to determine the level of exterior or interior, noise attenuation needed to attain an acceptable noise exposure level and the feasibility of such mitigation when other planning considerations are taken into account.

Table 5.8-7 General Plan Land Use Noise Compatibility Matrix

	Land Use Categories	Community Noise Equivalent Level (CNEL)						
Categories	Uses	<55	55-60	60-65	65-70	70-75	75-80	>80
Residential	Single Family, Two Family, Multiple Family	Α	Α	В	С	С	D	D
Residential	Mixed Use	Α	Α	Α	С	С	С	D
Residential	Mobile Home	Α	Α	В	С	С	D	D
Commercial Regional, District	Hotel, Motel, Transient Lodging	Α	А	В	В	С	С	D
Commercial Regional, Village District, Special	Commercial Retail, Bank, Restaurant, Movie Theatre	Α	A	А	А	В	В	С
Commercial Industrial Institutional	Office Building, Research and Development, Professional Offices, City Office Building	А	A	А	В	В	С	D
Commercial Recreational Institutional Civic Center	Amphitheatre, Concert Hall Auditorium, Meeting Hall	В	В	С	С	D	D	D
Commercial Recreation	Children's Amusement Park, Miniature Golf Course, Go-cart Track, Equestrian Center, Sports Club	Α	A	А	В	В	D	D
Commercial General, Special Industrial, Institutional	Automobile Service Station, Auto Dealership, Manufacturing, Warehousing, Wholesale, Utilities	A	А	A	A	В	В	В
Institutional	Hospital, Church, Library, Schools' Classroom	Α	А	В	С	С	D	D
Open Space	Parks	Α	Α	Α	В	С	D	D
Open Space	Golf Course, Cemeteries, Nature Centers Wildlife Reserves, Wildlife Habitat	Α	А	Α	Α	В	С	С
Agriculture	Agriculture	Α	Α	Α	Α	Α	Α	Α

Source: Newport Beach Noise Element, 2006

Zone A: Clearly Compatible—Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction without any special noise insulation requirements.

Zone B: Normally Compatible—New construction or development should be undertaken only after detailed analysis of the noise reduction requirements and are made and needed noise insulation features in the design are determined. Conventional construction, with closed windows and fresh air supply systems or air conditioning, will normally suffice.

Zone C: Normally Incompatible—New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of noise reduction requirements must be made and needed noise insulation features included in the design.

Zone D: Clearly Incompatible—New construction or development should generally not be undertaken.

Policy N 1.8:

Require the employment of noise mitigation measures for existing sensitive uses when a significant noise impact is identified. A significant noise impact occurs when there is an increase in the ambient CNEL produced by new development impacting existing sensitive uses. The CNEL increase is shown in <u>Table 5.8-8</u>, <u>General Plan Noise Increase Significance Criteria</u>.

Table 5.8-8 General Plan Noise Increase Significance Criteria

CNEL (dBA)	dBA Increase							
55	3							
60	2							
65	1							
70	1							
Over 75	Any increase is considered significant							
Source: City of Newport Bea	Source: City of Newport Beach Noise Element, 2006.							

Goal N 4, Minimization of Nontransportation-Related Noise: Minimized nontransportation-related noise impacts on sensitive noise receptors.

Policy N 4.1: Enforce interior and exterior noise standards outlined in Table N3 (<u>Tables 5.8-5</u> and <u>5.8-6</u> above), and in the City's Municipal Code to ensure that sensitive noise receptors are not exposed to excessive noise levels from stationary noise sources, such as heating, ventilation, and air conditioning equipment.

Policy N 4.6: Enforce the Noise Ordinance noise limits and limits on hours of maintenance or construction activity in or adjacent to residential areas, including noise that results from in-home hobby or work related activities.

Policy N 4.8: Regulate the use of mechanized landscaping equipment.

Goal N 5, Minimized excessive construction-related noise.

Policy N 5.1: Enforce the limits on hours of construction activity.

5.8.3 IMPACT THRESHOLDS AND SIGNIFICANCE CRITERIA

Appendix G, of the CEQA Guidelines contains analysis guidelines related to the assessment of noise impacts. These guidelines have been utilized as thresholds of significance for this analysis. As stated in Appendix G, a project would create a significant environmental impact if it would:

• Expose persons to, or generate, noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies (refer to Impact Statement N-1);

- Expose persons to or generate excessive ground borne vibration or ground borne noise levels (refer to Impact Statement N-2);
- Result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project (refer to Impact Statements N-3 and N-4);
- Result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project (refer to Impact Statement N-1);
- For a project located within an airport land use plan or, where such a plan has not been
 adopted, within two miles of a public airport or public use airport, expose people residing or
 working in the project area to excessive noise levels (refer to Section 8.0, Effects Found Not to
 be Significant); and
- For a project within the vicinity of a private airstrip, expose people residing or working in the project area to excessive noise levels (refer to <u>Section 8.0</u>, <u>Effects Found Not to be Significant</u>).

NOISE IMPACT CRITERIA

Significance of Changes in Traffic Noise Levels

An off-site traffic noise impact typically occurs when there is a discernable increase in traffic and the resulting noise level exceeds an established noise standard. In community noise considerations, changes in noise levels greater than 3 dB are often identified as substantial, while changes less than 1 dB will not be discernible to local residents. A 5 dB change is generally recognized as a clearly discernable difference.

As traffic noise levels at sensitive uses likely approach or exceed the 65 CNEL standard, a 3.0 dB increase as a result of the project is used as the increase threshold for the project. Thus, the project would result in a significant noise impact if a permanent increase in ambient noise levels of 3.0 dB occurs upon project implementation and the resulting noise level exceeds the applicable exterior standard at a noise sensitive use.

Significance of Changes in Cumulative Traffic Noise Levels

The project's contribution to a cumulative traffic noise increase would be considered significant when the combined effect exceeds the perception level (i.e., auditory level increase) threshold. The combined effect compares the "cumulative with project" condition to the "existing" conditions. This comparison accounts for the traffic noise increase from the project generated in combination with traffic generated by projects in the cumulative projects list. The following criteria have been utilized to evaluate the combined effect of the cumulative noise increase.

• <u>Combined Effects</u>: The cumulative with project noise level ("Future With Project") would cause a significant cumulative impact if a 3.0 dB increase over existing conditions occurs and the resulting noise level exceeds the applicable exterior standard at a sensitive use.

Although there may be a significant noise increase due to the proposed project in combination with other related projects (combined effects), it must also be demonstrated that the project has an

incremental effect. In other words, a significant portion of the noise increase must be due to the proposed project. The following criteria have been utilized to evaluate the incremental effect of the cumulative noise increase.

• <u>Incremental Effects</u>: The "Future With Project" causes a 1 dBA increase in noise over the "Future No Project" noise level.

A significant impact would result only if both the combined and incremental effects criteria have been exceeded and the resulting noise level exceeds the applicable exterior standard at a noise sensitive use.

5.8.4 IMPACTS AND MITIGATION MEASURES

SHORT-TERM CONSTRUCTION NOISE IMPACTS

N-1 GRADING AND CONSTRUCTION WITHIN THE AREA COULD RESULT IN SIGNIFICANT TEMPORARY NOISE IMPACTS TO NEARBY NOISE SENSITIVE RECEIVERS.

Impact Analysis: Construction activities associated with the project would generate perceptible noise levels during the demolition, grading, paving, and building construction phases. High groundborne noise levels and other miscellaneous noise levels can be created by the operation of heavy-duty trucks, backhoes, bulldozers, excavators, front-end loaders, scrapers, and other heavy-duty construction equipment. Table 5.8-9, Maximum Noise Levels Generated by Construction Equipment, indicates the anticipated noise levels of construction equipment. The average noise levels presented in Table 5.8-9 are based on the quantity, type, and Acoustical Use Factor for each type of equipment that is anticipated to be used.

Table 5.8-9
Maximum Noise Levels Generated by Construction Equipment

Type of Equipment	Acoustical Use Factor ¹ (percent)	L _{max} at 50 Feet (dBA)
Crane	16	81
Dozer	40	82
Excavator	40	81
Generator	50	81
Grader	40	85
Other Equipment (greater than five horse power)	50	85
Paver	50	77
Pile Driver (impact)	20	101
Pile Driver (sonic)	20	96
Roller	20	80
Tractor	40	84
Truck	40	80
Welder	40	73

Note:

Source: Federal Highway Administration, Roadway Construction Noise Model (FHWA-HEP-05-054), January 2006.

Acoustical use factor (percent): Estimates the fraction of time each piece of construction equipment is operating at full power (i.e., its loudest condition) during a construction operation.

The project site is predominantly flat and would not require extensive heavy grading. The primary construction equipment noise sources used during construction would be during demolition (use of tractors, forklifts, loader/backhoe, and concrete/industrial saws), grading (use of graders, excavators, dozers), and building construction (use of forklifts, tractors/loaders/backhoes, and a crane). Graders typically generate the highest noise levels, emitting approximately 85 dBA at a distance of 50 feet.

Point sources of noise emissions are atmospherically attenuated by a factor of 6 dBA per doubling of distance. This assumes a clear line-of-sight and no other machinery or equipment noise that would mask project construction noise. The shielding of buildings and other barriers that interrupt line-of-sight conditions further reduce noise levels from point sources.

The nearest sensitive receptors to the project are residential uses located approximately 75 feet to the south of the closest project boundary. Construction of the proposed project would occur throughout the entirety of the project site, and would not be confined to one location for an extended period of time. In addition, traffic noise along Newport Boulevard from Finley Avenue to 32nd Street) is approximately 64.6 dBA CNEL at 100 feet; refer to Table 5.8-4, Existing Traffic Noise Levels. It is unlikely that daytime construction noise would be noticeable with these background traffic noise levels. Further, the City of Newport Beach exempts construction noise from adherence to noise standards as long as activity occurs during permissible hours of 7:00 a.m. to 6:30 p.m. Monday through Friday, and 8:00 a.m. to 6:00 p.m. on Saturdays. Unless conditional approval is provided by the review authority, construction activities are not permitted outside the allowable time window or on Sundays and National Holidays.

Construction activities would also cause increased noise along access routes to and from the site due to movement of equipment and workers. The proposed project would require the import of 7,379 cubic yards of soil, which would result in approximately 2,188 soil hauling trips. However, as construction would be limited to daytime hours per Municipal Code Section 10.28.040 and due to the short-term nature of construction activities, noise from vehicles accessing the project site is not anticipated to be significant.

Adherence to the Municipal Code *Section 10.28.040* requirements and compliance with the recommended Mitigation Measure N-1 would reduce short-term construction noise impacts by requiring mobile equipment to be muffled and requiring best management practices for hauling activities. Construction of the proposed project is anticipated to occur over a 14-month period and sensitive receptors would not be exposed to significant construction noise levels over an extended period of time. Construction noise impacts would cease upon completion of the construction phase. Implementation of Mitigation Measure N-1 would minimize any impacts from construction noise and would ensure that impacts are reduced to a less than significant level.

Mitigation Measures:

- N-1 Prior to issuance of any Grading Permit or Building Permit for new construction, Community Development Department shall confirm that the Grading Plan, Building Plans, and specifications stipulate that:
 - All construction equipment, fixed or mobile, shall be equipped with properly operating and maintained mufflers and other State required noise attenuation devices.

- The Applicant shall provide a qualified "Noise Disturbance Coordinator." The Disturbance Coordinator shall be responsible for responding to any local complaints about construction noise. When a complaint is received, the Disturbance Coordinator shall notify the City within 24-hours of the complaint and determine the cause of the noise complaint (e.g., starting too early, bad muffler, etc.) and shall implement reasonable measures to resolve the complaint, as deemed acceptable by the City Development Services Department. The contact name and the telephone number for the Disturbance Coordinator shall be clearly posted on-site.
- When feasible, construction haul routes shall be designed to avoid noise sensitive uses (e.g., residences, convalescent homes, etc.).
- During construction, stationary construction equipment shall be placed such that emitted noise is directed away from sensitive noise receivers.
- Construction activities that produce noise shall not take place outside of the allowable hours specified by the City's *Municipal Code Section 10.28.040* (7:00 a.m. and 6:30 p.m. on weekdays, 8:00 a.m. and 6:00 p.m. on Saturdays; construction is prohibited on Sundays and/or federal holidays).

Level of Significance: Less Than Significant With Mitigation Incorporated.

VIBRATION IMPACTS

N-2 PROJECT IMPLEMENTATION WOULD NOT RESULT IN SIGNIFICANT VIBRATION IMPACTS TO NEARBY SENSITIVE RECEPTORS.

Impact Analysis: Project construction can generate varying degrees of groundborne vibration, depending on the construction procedure and the construction equipment used. Operation of construction equipment generates vibrations that spread through the ground and diminish in amplitude with distance from the source. The effect on buildings located in the vicinity of the construction site often varies depending on soil type, ground strata, and construction characteristics of the receiver building(s). The results from vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibration at moderate levels, to slight damage at the highest levels. Groundborne vibrations from construction activities rarely reach levels that damage structures.

The Federal Transit Administration (FTA) has published standard vibration velocities for construction equipment operations. In general, the FTA architectural damage criterion for continuous vibrations (i.e., 0.2 inch/second) appears to be conservative even for sustained pile driving. Pile driving levels often exceed 0.2 inch/second at distances of 50 feet, and 0.5 inch/second at 25 feet without any apparent damage to buildings.

Construction vibration impacts include human annoyance and building damage. Human annoyance occurs when construction vibration rises significantly above the threshold of human perception for extended periods of time. Building damage can be cosmetic or structural. Ordinary buildings that are not particularly fragile would not experience any cosmetic damage (e.g., plaster cracks) at

distances beyond 30 feet. This distance can vary substantially depending on the soil composition and underground geological layer between vibration source and receiver. In addition, not all buildings respond similarly to vibration generated by construction equipment. The typical vibration produced by construction equipment is illustrated in <u>Table 5.8-10</u>, <u>Typical Vibration Levels for Construction Equipment</u>.

Table 5.8-10
Typical Vibration Levels for Construction Equipment

Equipment	Approximate peak particle velocity at 50 feet (inches/second) ¹	Approximate peak particle velocity at 75 feet (inches/second) ²	Approximate peak particle velocity at 100 feet (inches/second) ²	
Large bulldozer	0.031	0.006	0.004	
Loaded trucks	0.027	0.005	0.003	
Small bulldozer	0.001	0.000	0.000	
Jackhammer	0.012	0.002	0.002	
Vibratory compactor/roller	0.074	0.014	0.009	

Notes:

- 1. Federal Transit Administration, Transit Noise and Vibration Impact Assessment Guidelines, May 2006.
- 2. Calculated using the following formula:

PPV $_{equip}$ = PPV $_{ref}$ x (25/D)^{1.5}

where: PPV (equip) = the peak particle velocity in in/sec of the equipment adjusted for the distance

PPV (ref) = the reference vibration level in in/sec from Table 12-2 of the FTA Transit Noise and Vibration Impact

Assessment Guidelines

D = the distance from the equipment to the receiver

As indicated in <u>Table 5.8-10</u>, based on the FTA data, vibration velocities from typical heavy construction equipment that would be used during project construction range from 0.001 to 0.031 inch-per-second peak particle velocity (PPV) at 50 feet from the source of activity. With regard to the proposed project, groundborne vibration would be generated primarily during site clearing and grading activities on-site and by off-site haul-truck travel. The nearest sensitive land uses (residential uses) are located approximately 75 feet to the south of the project site boundaries. As demonstrated in <u>Table 5.8-10</u>, the anticipated vibration levels at these distances would not exceed the 0.2 inch-per-second PPV significance threshold during construction operations occurring along the project's western boundary. It should be noted that 0.2 inch-per-second PPV is a conservative threshold, as that is the construction vibration damage criteria for non-engineered timber and masonry buildings. Buildings within the project area would be better represented by the 0.5 inch-per-second PPV significance threshold (construction vibration damage criteria for a reinforced concrete, steel or timber buildings). Therefore, vibration impacts associated with construction are anticipated to be less than significant and no mitigation measures are required.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

¹ Federal Transit Administration, Transit Noise and Vibration Impact Assessment Guidelines, May 2006.

² Ibid.

LONG-TERM (MOBILE) NOISE IMPACTS

N-3 TRAFFIC GENERATED BY THE PROPOSED PROJECT WOULD NOT SIGNIFICANTLY CONTRIBUTE TO EXISTING TRAFFIC NOISE IN THE AREA OR EXCEED THE CITY'S ESTABLISHED STANDARDS.

Impact Analysis:

Off-Site Noise Conditions

Future Traffic Noise

The "Future Without Project" and "Future With Project" scenarios were compared for long-term conditions. In <u>Table 5.8-11</u>, <u>Future Noise Scenarios</u>, the noise levels (dBA at 100 feet from centerline) depict what would typically be heard 100 feet perpendicular to the roadway centerline. As indicated in <u>Table 5.8-11</u> under the "Future Without Project" scenario, noise levels at a distance of 100 feet from the centerline would range from approximately 51.9 dBA to 72.9 dBA. The highest noise levels under "Future Without Project" conditions would occur along Newport Boulevard, north of Hospital Road. Under the "Future With Project" scenario, noise levels at a distance of 100 feet from the centerline would range from approximately 51.9 dBA to 73.0 dBA. The highest noise levels occurring under these conditions would also occur along Newport Boulevard, north of Hospital Road. <u>Table 5.8-11</u> also compares the "Future Without Project" scenario to the "Future With Project" scenario. The proposed project would increase noise levels on the surrounding roadways by a maximum of 0.3 dBA along 32nd Street, east of Newport Boulevard. Therefore, noise levels resulting from the proposed project would be less than significant.

On-Site Noise Conditions

The proposed project consists of the development of a 130-room hotel at the former Newport Beach City Hall Complex, including an outdoor deck and patio area on the western portion of the site adjacent to Newport Boulevard (refer to Exhibit 3-3, Conceptual Site Plan). Under the "Future With Project Scenario" traffic noise levels along Newport Boulevard, from Finley Avenue to 32nd Street would be approximately 65.0 dBA at 100 feet from the roadway centerline. However, mobile source noise levels along this roadway segment would not increase by 3.0 dBA or more. The maximum noise increase under the "Future With Project Scenario" would be 0.3 dBA along 32nd Street east of Balboa Boulevard. As such, the proposed project would not generate traffic noise levels that would result in significant impacts to on-site uses. Therefore, a less than significant impact would occur in this regard.

Table 5.8-11
Future Noise Scenarios

		Future Without Project				Future With Project						
Roadway Segment		dBA @ 100 Feet from	Distance from Roadway Centerline to: (Feet)			dBA @ 100 Feet from	dBA @ 100 Cent		oadway Feet)	Difference in dBA @ 100 feet	Potentially Significant	
,	ADT	Roadway Centerline	60 CNEL Noise Contour	65 CNEL Noise Contour	70 CNEL Noise Contour	ADT	Roadway Centerline	60 CNEL Noise Contour	65 CNEL Noise Contour	70 CNEL Noise Contour	from Roadway	Impact?
Newport Boulevard												
16th Street to Industrial Way	61,200	72.9	2,468	780	247	61,700	73.0	2,491	788	249	0.1	No
Industrial Way to Hospital Road	60,400	72.9	2,440	772	244	60,900	72.9	2,457	777	246	0	No
Hospital Road to Coast Highway	57,300	70.4	1,343	425	134	57,800	70.4	1,355	428	136	0	No
Coast Highway to Via Lido	49,800	69.7	1,168	369	11	50,800	69.8	1,189	376	119	0.1	No
Via Lido to Finley Avenue	33,400	65.3	412	130	41	34,300	65.4	424	134	42	0.1	
Finley Avenue to 32nd Street	30,500	64.9	377	119	38	30,800	65.0	380	120	38	0.1	No
32nd Street to 28th Street	23,400	64.1	289	91	29	23,500	64.2	290	92	29	0.1	
Superior Avenue												
Placentia Ave to Coast Hwy	25,600	67.0	600	190	60	25,600	67.0	600	190	60	0	No
Balboa Boulevard												
Coast Highway to 32nd Street	21,800	63.8	63.8	269	85	21,800	63.8	269	85	27	0	No
South of 32nd Street	10,700	60.6	60.6	132	42	10,700	60.6	132	42	13	0	No
Hospital Road					•	•		•	•		•	
West of Newport Boulevard	17,600	64.3	64.3	303	96	17,600	64.3	303	96	30	0	No
Coast Highway	<u> </u>		l.					II.			•	
Orange St to Superior Ave	56,600	72.7	2,285	723	229	56,800	72.7	2,291	724	229	0	No
Superior Ave to Newport Blvd	54,900	71.2	1,709	540	171	55,100	71.2	1,713	542	171	0	No
32nd Street	, , , , ,		,	1	1		1	· '	ı	1	<u> </u>	1
Balboa Blvd to Newport Blvd	7,700	59.3	59.3	95	30	7,700	59.3	95	30	10	0	No
East of Newport Blvd	3,400	55.8	55.8	42	13	3,700	56.1	46	14	5	0.3	No
28th Street	, ,							1		1	ı	1
West of Newport Boulevard	1,400	51.9	17	5	2	1,400	51.9	17	5	2	0	No
Notes: ADT = average daily trips; dBA = A	-weighted deci	bels; CNEL = con	nmunity noise e	quivalent level						•	•	•
Source: Noise modeling is based upon tra-	ffic data within	the Lide House H	otal Project Tra	ffic Impact Analy	icic propared	DRE Concu	Iting April 2014					

Source: Noise modeling is based upon traffic data within the Lido House Hotel Project Traffic Impact Analysis, prepared RBF Consulting, April 2014.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

LONG-TERM (STATIONARY) NOISE IMPACTS

N-4 THE PROPOSED PROJECT WOULD NOT RESULT IN A SIGNIFICANT INCREASE IN LONG-TERM STATIONARY AMBIENT NOISE LEVELS.

Impact Analysis: Noise associated with operational activities of the proposed project would be generated by heating, ventilation, and air conditioning (HVAC) units, people swimming/utilizing the pool area, automobiles and trucks entering/existing the parking lot, delivery trucks, and people using the outdoor deck and patio area. The project site is surrounded by developed urban uses, including commercial, office, and institutional uses (Christian Science First Church and St. James the Great Episcopal Church to the east). Stationary noise from the proposed project would be similar to the existing surrounding environment, and would be masked by traffic noise along the roadways adjoining the project site (i.e., Newport Boulevard, 32nd Street, and Villa Way). Noise impacts to surrounding uses from the proposed project are anticipated to be less than significant.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

5.8.5 CUMULATIVE IMPACTS

<u>Table 4.1, Cumulative Projects List</u>, identifies the related projects and other possible development in the area determined as having the potential to interact with the proposed project to the extent that a significant cumulative effect may occur. The following discussions are included per topic area to determine whether a significant cumulative effect would occur.

SHORT-TERM CONSTRUCTION NOISE IMPACTS

 GRADING AND CONSTRUCTION WITHIN THE AREA COULD RESULT IN SIGNIFICANT SHORT-TERM NOISE IMPACTS TO NEARBY NOISE SENSITIVE RECEIVERS, FOLLOWING IMPLEMENTATION OF MITIGATION MEASURES.

Impact Analysis: Construction activities associated with the proposed project and cumulative projects may overlap, resulting in construction noise in the area. However, construction noise impacts primarily affect the areas immediately adjacent to the construction site. The closest cumulative project is the 2300 Newport Boulevard Project (27 condominium units, and 36,000 square feet of retail/office space), located approximately 1,860 feet to the south. The two projects (proposed project and 2300 Newport Boulevard Project) are separated by a number of intervening structures and local streets. As such, cumulative noise impacts would not occur due to site distance and intervening structures. The proposed project and the 2300 Newport Boulevard Project would be required to comply with the City's Municipal Code limitations on allowable hours of construction. The proposed project would also implement Mitigation Measure N-1 to reduce

construction noise impacts to less than significant levels. Therefore, the project's contribution to cumulative noise impacts would be less than significant.

Mitigation Measures: Refer to Mitigation Measure N-1.

Level of Significance: Less Than Significant With Mitigation Incorporated.

VIBRATION IMPACTS

PROJECT IMPLEMENTATION WOULD NOT RESULT IN SIGNIFICANT VIBRATION IMPACTS TO NEARBY SENSITIVE RECEPTORS.

Impact Analysis: As stated above, construction activities associated with the proposed project and cumulative projects may overlap. Despite the potential for overlap, groundborne vibration generated at the project site during construction would not be in exceedance of the Federal Transit Administration 0.2 inch/second threshold. In addition, there would be no vibration impacts associated with operations at the project site. The nearest cumulative project is the 2300 Newport Boulevard Project, located approximately 1,860 feet south of the proposed project site. No cumulative vibration impacts would occur at this distance. Therefore, vibration impacts of the proposed project would not be cumulatively considerable. Further, the cumulative development projects would be required to implement any required mitigation measures that may be prescribed pursuant to CEQA provisions. Therefore, the project's contribution to cumulative vibration impacts would be less than significant.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

LONG-TERM (MOBILE) NOISE IMPACTS

● TRAFFIC GENERATED BY THE PROPOSED PROJECT WOULD NOT SIGNIFICANTLY CONTRIBUTE TO EXISTING TRAFFIC NOISE IN THE AREA OR EXCEED THE CITY'S ESTABLISHED STANDARDS.

Impact Analysis: The cumulative mobile noise analysis is conducted in a two-step process. First, the combined effects from both the proposed project and other projects are compared. Second, for combined effects that are determined to be cumulatively significant, the project's incremental effects then are analyzed. The project's contribution to a cumulative traffic noise increase would be considered significant when the combined effect exceeds perception level (i.e., auditory level increase) threshold. The combined effect compares the "cumulative with project" condition to "existing" conditions. This comparison accounts for the traffic noise increase from the project generated in combination with traffic generated by projects in the cumulative projects list. The following criteria have been utilized to evaluate the combined effect of the cumulative noise increase.

<u>Combined Effects</u>. The cumulative with project noise level ("Future With Project") would cause a significant cumulative impact if a 3.0 dB increase over existing conditions occurs and the resulting noise level exceeds the applicable exterior standard at a sensitive use.

Although there may be a significant noise increase due to the proposed project in combination with other related projects (combined effects), it must also be demonstrated that the project has an incremental effect. In other words, a significant portion of the noise increase must be due to the proposed project. The following criteria have been utilized to evaluate the incremental effect of the cumulative noise increase.

<u>Incremental Effects</u>. The "Future With Project" causes a 1 dBA increase in noise over the "Future Without Project" noise level.

A significant impact would result only if both the combined and incremental effects criteria have been exceeded. Noise by definition is a localized phenomenon, and drastically reduces as distance from the source increases. Consequently, only proposed projects and growth due to occur in the general vicinity of the project site would contribute to cumulative noise impacts. <u>Table 5.8-12</u>, <u>Cumulative Noise Scenario</u>, lists the traffic noise effects along roadway segments in the project vicinity for "Existing", "Future Without Project", and "Future With Project", including incremental and net cumulative impacts.

First, it must be determined whether the "Future With Project" increase above existing conditions (*Combined Effects*) is exceeded. Per <u>Table 5.8-12</u>, this criteria is not exceeded along any of the segments. Next, under the *Incremental Effects* criteria, cumulative noise impacts are defined by determining if the forecast ambient ("Future Without Project") noise level is increased by 1 dB or more. Based on the results of <u>Table 5.8-12</u>, there would not be any roadway segments that would result in significant impacts, as they would not exceed either the combined or the incremental effects criteria. The proposed project would not result in long-term mobile noise impacts based on project generated traffic as well as cumulative and incremental noise levels. Therefore, the proposed project, in combination with cumulative background traffic noise levels, would result in a less than significant cumulative impact in this regard.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

Table 5.8-12 Cumulative Noise Scenario

	Existing	Future Without Project	Future With Project	Combined Effects	Incremental Effects	Cumulatively
Roadway Segment	dBA @ 100 Feet from Roadway Centerline			Difference in dBA Between Existing and Future With Project	Difference in dBA Between Future Without Project and Future With Project	Significant Impact?
Newport Boulevard						
16th Street to Industrial Way	72.5	72.9	73.0	0.5	0.1	No
Industrial Way to Hospital Road	72.5	72.9	72.9	0.4	0	No
Hospital Road to Coast Highway	70.0	70.4	70.4	0.4	0	No
Coast Highway to Via Lido	69.4	69.7	69.8	0.4	0.1	No
Via Lido to Finley Avenue	65.0	65.3	65.4	0.4	0.1	
Finley Avenue to 32nd Street	64.6	64.9	65.0	0.4	0.1	No
32nd Street to 28th Street	63.9	64.1	64.2	0.3	0.1	No
Superior Avenue	•			0	0	
Placentia Ave to Coast Hwy	66.7	67.0	67.0	0.3	0	No
Balboa Boulevard				0	0	
Coast Highway to 32nd Street	63.4	63.8	63.8	0.4	0	No
South of 32nd Street	60.2	60.6	60.6	0.4	0	No
Hospital Road				0	0	
West of Newport Boulevard	63.9	64.3	64.3	0.4	0	No
Coast Highway				0	0	
Orange St to Superior Ave	72.0	72.7	72.7	0.7	0	No
Superior Ave to Newport Blvd	70.6	71.2	71.2	0.6	0	No
32nd Street				0	0	
Balboa Blvd to Newport Blvd	59.1	59.3	59.3	0.2	0	No
East of Newport Blvd	55.6	55.8	56.1	0.5	0.3	No
28th Street				0	0	
West of Newport Boulevard	51.6	51.9	51.9	0.3	0	No
Notes: ADT = average daily trips; dBA = A	-weighted decibels; CNEI	_ = community noise ed	uivalent level			
Source: Noise modeling is based upon traf				pared RBF Consulting, Apri	I 2014.	

LONG-TERM (STATIONARY) NOISE IMPACTS

● THE PROPOSED PROJECT WOULD NOT RESULT IN A SIGNIFICANT INCREASE IN LONG-TERM STATIONARY AMBIENT NOISE LEVELS.

Although the related cumulative projects have been identified within the project study area, the noise generated by stationary equipment on-site cannot be quantified due to the speculative nature of conceptual nature of each development. However, each cumulative project would require separate discretionary approval and CEQA assessment, which would address potential noise impacts and identify necessary attenuation measures, where appropriate. Additionally, as noise dissipates as it travels away from its source, noise impacts from stationary sources would be limited to each of the respective sites and their vicinities. The nearest related project to the project site would be the 2300 Newport Boulevard Project (approximately 1,860 feet to the south). The 2300 Newport Boulevard Project site and proposed project site are separated by a number of intervening structures and local streets. Due to site distance and these intervening land uses, cumulative stationary noise impacts would not occur. As noted above, the proposed project would not result in significant stationary noise impacts. The proposed project would not result in stationary long-term equipment that would significantly affect surrounding sensitive receptors. Thus, the proposed project and identified cumulative projects are not anticipated to result in a significant cumulative impact.

Mitigation Measures: No mitigation measures are required.

Level of Significance: Less Than Significant Impact.

5.8.6 SIGNIFICANT UNAVOIDABLE IMPACTS

No unavoidable significant impacts related to air quality have been identified following implementation of the recommended Mitigation Measure N-1 and compliance with the applicable Federal, State, and local regulatory requirements.